56 research outputs found

    Overexpression of the Axl tyrosine kinase receptor in cutaneous SCC-derived cell lines and tumours

    Get PDF
    The molecular mechanisms that underlie the development of squamous cell skin cancers (SSC) are poorly understood. We have used oligonucleotide microarrays to compare the differences in cellular gene expression between a series of keratinocyte cell that mimic disease progression with the aim of identifying genes that may potentially contribute towards squamous cell carcinoma (SCC) progression in vivo, and in particular to identify markers that may serve as potential therapeutic targets for SCC treatment. Gene expression differences were corroborated by polymerase chain reaction and Western blotting. We identified Axl, a receptor tyrosine kinase with transforming potential that has also been shown to have a role in cell survival, adhesion and chemotaxis, was upregulated in vitro in SCC-derived cells compared to premalignant cells. Extending the investigation to tumour biopsies showed that the Axl protein was overexpressed in vivo in a series of SCCs

    External validation suggests Integrin beta 3 as prognostic biomarker in serous ovarian adenocarcinomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The majority of women with ovarian cancer are diagnosed in late stages, and the mortality rate is high. The use of biomarkers as prognostic factors may improve the treatment and clinical outcome of these patients. We performed an external validation of the potential biomarkers CLU, ITGB3, CAPG, and PRAME to determine if the expression levels are relevant to use as prognostic factors.</p> <p>Methods</p> <p>We analysed the gene expression of CLU, ITGB3, CAPG, and PRAME in 30 advanced staged serous adenocarcinomas with quantitative real-time polymerase chain reaction (QPCR) and the protein levels were analysed in 98 serous adenocarcinomas with western blot for semiquantitative analysis. Statistical differences in mRNA and protein expressions between tumours from survivors and tumours from deceased patients were evaluated using the Mann-Whitney U test.</p> <p>Results</p> <p>The gene and protein ITGB3 (Integrin beta 3) were significantly more expressed in tumours from survivors compared to tumours from deceased patients, which is in concordance with our previous results. However, no significant differences were detected for the other three genes or proteins CLU, CAPG, and PRAME.</p> <p>Conclusion</p> <p>The loss of ITGB3 expression in tumours from deceased patients and high expression in tumours from survivors could be used as a biomarker for patients with advanced serous tumours.</p

    Transcription factor site dependencies in human, mouse and rat genomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is known that transcription factors frequently act together to regulate gene expression in eukaryotes. In this paper we describe a computational analysis of transcription factor site dependencies in human, mouse and rat genomes.</p> <p>Results</p> <p>Our approach for quantifying tendencies of transcription factor binding sites to co-occur is based on a binding site scoring function which incorporates dependencies between positions, the use of information about the structural class of each transcription factor (major/minor groove binder), and also considered the possible implications of varying GC content of the sequences. Significant tendencies (dependencies) have been detected by non-parametric statistical methodology (permutation tests). Evaluation of obtained results has been performed in several ways: reports from literature (many of the significant dependencies between transcription factors have previously been confirmed experimentally); dependencies between transcription factors are not biased due to similarities in their DNA-binding sites; the number of dependent transcription factors that belong to the same functional and structural class is significantly higher than would be expected by chance; supporting evidence from GO clustering of targeting genes. Based on dependencies between two transcription factor binding sites (second-order dependencies), it is possible to construct higher-order dependencies (networks). Moreover results about transcription factor binding sites dependencies can be used for prediction of groups of dependent transcription factors on a given promoter sequence. Our results, as well as a scanning tool for predicting groups of dependent transcription factors binding sites are available on the Internet.</p> <p>Conclusion</p> <p>We show that the computational analysis of transcription factor site dependencies is a valuable complement to experimental approaches for discovering transcription regulatory interactions and networks. Scanning promoter sequences with dependent groups of transcription factor binding sites improve the quality of transcription factor predictions.</p

    Identification of proteins involved in neural progenitor cell targeting of gliomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Glioblastoma are highly aggressive tumors with an average survival time of 12 months with currently available treatment. We have previously shown that specific embryonic neural progenitor cells (NPC) have the potential to target glioma growth in the CNS of rats. The neural progenitor cell treatment can cure approximately 40% of the animals with malignant gliomas with no trace of a tumor burden 6 months after finishing the experiment. Furthermore, the NPCs have been shown to respond to signals from the tumor environment resulting in specific migration towards the tumor. Based on these results we wanted to investigate what factors could influence the growth and progression of gliomas in our rodent model.</p> <p>Methods</p> <p>Using microarrays we screened for candidate genes involved in the functional mechanism of tumor inhibition by comparing glioma cell lines to neural progenitor cells with or without anti-tumor activity. The expression of candidate genes was confirmed at RNA level by quantitative RT-PCR and at the protein level by Western blots and immunocytochemistry. Moreover, we have developed <it>in vitro </it>assays to mimic the antitumor effect seen <it>in vivo</it>.</p> <p>Results</p> <p>We identified several targets involved in glioma growth and migration, specifically CXCL1, CD81, TPT1, Gas6 and AXL proteins. We further showed that follistatin secretion from the NPC has the potential to decrease tumor proliferation. <it>In vitro </it>co-cultures of NPC and tumor cells resulted in the inhibition of tumor growth. The addition of antibodies against proteins selected by gene and protein expression analysis either increased or decreased the proliferation rate of the glioma cell lines <it>in vitro</it>.</p> <p>Conclusion</p> <p>These results suggest that these identified factors might be useful starting points for performing future experiments directed towards a potential therapy against malignant gliomas.</p

    Simulation-based cheminformatic analysis of organelle-targeted molecules: lysosomotropic monobasic amines

    Get PDF
    Cell-based molecular transport simulations are being developed to facilitate exploratory cheminformatic analysis of virtual libraries of small drug-like molecules. For this purpose, mathematical models of single cells are built from equations capturing the transport of small molecules across membranes. In turn, physicochemical properties of small molecules can be used as input to simulate intracellular drug distribution, through time. Here, with mathematical equations and biological parameters adjusted so as to mimic a leukocyte in the blood, simulations were performed to analyze steady state, relative accumulation of small molecules in lysosomes, mitochondria, and cytosol of this target cell, in the presence of a homogenous extracellular drug concentration. Similarly, with equations and parameters set to mimic an intestinal epithelial cell, simulations were also performed to analyze steady state, relative distribution and transcellular permeability in this non-target cell, in the presence of an apical-to-basolateral concentration gradient. With a test set of ninety-nine monobasic amines gathered from the scientific literature, simulation results helped analyze relationships between the chemical diversity of these molecules and their intracellular distributions

    A novel family of diversified immunoregulatory receptors in teleosts is homologous to both mammalian Fc receptors and molecules encoded within the leukocyte receptor complex

    Get PDF
    Three novel and closely related leukocyte immune-type receptors (IpLITR) have been identified in channel catfish (Ictalurus punctatus). These receptors belong to a large polymorphic and polygenic subset of the Ig superfamily with members located on at least three independently segregating loci. Like mammalian and avian innate immune regulatory receptors, IpLITRs have both putative inhibitory and stimulatory forms, with multiple types coexpressed in various lymphoid tissues and clonal leukocyte cell lines. IpLITRs have an unusual and novel relationship to mammalian and avian innate immune receptors: the membrane distal Ig domains of an individual IpLITR are related to fragment crystallizable receptors (FcRs) and FcR-like proteins, whereas the membrane proximal Ig domains are related to several leukocyte receptor complex encoded receptors. This unique composition of Ig domains within individual receptors supports the hypothesis that functionally and genomically distinct immune receptor families found in tetrapods may have evolved from such ancestral genes by duplication and recombination events. Furthermore, the discovery of a large heterogeneous family of immunoregulatory receptors in teleosts, reminiscent of amphibian, avian, and mammalian Ig-like receptors, suggests that complex innate immune receptor networks have been conserved during vertebrate evolution. ELECTRONIC SUPPLEMENTARY MATERIAL: Supplementary material is available for this article at http://dx.doi.org/10.1007/s00251-006-0134-1 and is accessible for authorized users

    NF-Y Dependent Epigenetic Modifications Discriminate between Proliferating and Postmitotic Tissue

    Get PDF
    The regulation of gene transcription requires posttranslational modifications of histones that, in concert with chromatin remodeling factors, shape the structure of chromatin. It is currently under intense investigation how this structure is modulated, in particular in the context of proliferation and differentiation. Compelling evidence suggests that the transcription factor NF-Y acts as a master regulator of cell cycle progression, activating the transcription of many cell cycle regulatory genes. However, the underlying molecular mechanisms are not yet completely understood. Here we show that NF-Y exerts its effect on transcription through the modulation of the histone “code”. NF-Y colocalizes with nascent RNA, while RNA polymerase II is I phosphorylated on serine 2 of the YSPTSPS repeats within its carboxyterminal domain and histones are carrying modifications that represent activation signals of gene expression (H3K9ac and PAN-H4ac). Comparing postmitotic muscle tissue from normal mice and proliferating muscles from mdx mice, we demonstrate by chromatin immunoprecipitation (ChIP) that NF-Y DNA binding activity correlates with the accumulation of acetylated histones H3 and H4 on promoters of key cell cycle regulatory genes, and with their active transcription. Accordingly, p300 is recruited onto the chromatin of NF-Y target genes in a NF-Y-dependent manner, as demonstrated by Re-ChIP. Conversely, the loss of NF-Y binding correlates with a decrease of acetylated histones, the recruitment of HDAC1, and a repressed heterochromatic state with enrichment of histones carrying modifications known to mediate silencing of gene expression (H3K9me3, H3K27me2 and H4K20me3). As a consequence, NF-Y target genes are downregulated in this context. In conclusion, our data indicate a role of NF-Y in modulating the structure and transcriptional competence of chromatin in vivo and support a model in which NF-Y-dependent histone “code” changes contribute to the proper discrimination between proliferating and postmitotic cells in vivo and in vitro

    Pre-Clinical Evaluation of a Novel Nanoemulsion-Based Hepatitis B Mucosal Vaccine

    Get PDF
    Hepatitis B virus infection remains an important global health concern despite the availability of safe and effective prophylactic vaccines. Limitations to these vaccines include requirement for refrigeration and three immunizations thereby restricting use in the developing world. A new nasal hepatitis B vaccine composed of recombinant hepatitis B surface antigen (HBsAg) in a novel nanoemulsion (NE) adjuvant (HBsAg-NE) could be effective with fewer administrations.Physical characterization indicated that HBsAg-NE consists of uniform lipid droplets (349+/-17 nm) associated with HBsAg through electrostatic and hydrophobic interactions. Immunogenicity of HBsAg-NE vaccine was evaluated in mice, rats and guinea pigs. Animals immunized intranasally developed robust and sustained systemic IgG, mucosal IgA and strong antigen-specific cellular immune responses. Serum IgG reached > or = 10(6) titers and was comparable to intramuscular vaccination with alum-adjuvanted vaccine (HBsAg-Alu). Normalization showed that HBsAg-NE vaccination correlates with a protective immunity equivalent or greater than 1000 IU/ml. Th1 polarized immune response was indicated by IFN-gamma and TNF-alpha cytokine production and elevated levels of IgG(2) subclass of HBsAg-specific antibodies. The vaccine retains full immunogenicity for a year at 4 degrees C, 6 months at 25 degrees C and 6 weeks at 40 degrees C. Comprehensive pre-clinical toxicology evaluation demonstrated that HBsAg-NE vaccine is safe and well tolerated in multiple animal models.Our results suggest that needle-free nasal immunization with HBsAg-NE could be a safe and effective hepatitis B vaccine, or provide an alternative booster administration for the parenteral hepatitis B vaccines. This vaccine induces a Th1 associated cellular immunity and also may provide therapeutic benefit to patients with chronic hepatitis B infection who lack cellular immune responses to adequately control viral replication. Long-term stability of this vaccine formulation at elevated temperatures suggests a direct advantage in the field, since potential excursions from cold chain maintenance could be tolerated without a loss in therapeutic efficacy

    Maternal Immunization with Pneumococcal Surface Protein A Protects against Pneumococcal Infections among Derived Offspring

    Get PDF
    Pathogen-specific antibody plays an important role in protection against pneumococcal carriage and infections. However, neonates and infants exhibit impaired innate and adaptive immune responses, which result in their high susceptibility to pneumococci. To protect neonates and infants against pneumococcal infection it is important to elicit specific protective immune responses at very young ages. In this study, we investigated the protective immunity against pneumococcal carriage, pneumonia, and sepsis induced by maternal immunization with pneumococcal surface protein A (PspA). Mother mice were intranasally immunized with recombinant PspA (rPspA) and cholera toxin B subunit (CTB) prior to being mated. Anti-PspA specific IgG, predominantly IgG1, was present at a high level in the serum and milk of immunized mothers and in the sera of their pups. The pneumococcal densities in washed nasal tissues and in lung homogenate were significantly reduced in pups delivered from and/or breast-fed by PspA-immunized mothers. Survival after fatal systemic infections with various types of pneumococci was significantly extended in the pups, which had received anti-PspA antibody via the placenta or through their milk. The current findings strongly suggest that maternal immunization with PspA is an attractive strategy against pneumococcal infections during early childhood. (191 words

    Bowel management for the treatment of pediatric fecal incontinence

    Get PDF
    Fecal incontinence is a devastating underestimated problem, affecting a large number of individuals all over the world. Most of the available literature relates to the management of adults. The treatments proposed are not uniformly successful and have little application in the pediatric population. This paper presents the experience of 30 years, implementing a bowel management program, for the treatment of fecal incontinence in over 700 pediatric patients, with a success rate of 95%. The main characteristics of the program include the identification of the characteristics of the colon of each patient; finding the specific type of enema that will clean that colon and the radiological monitoring of the process
    corecore